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Thermodynamic aspects of chemically curved 
crystals 
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The thermodynamic stability of an elastic material with a constant concentration gradient 
is analysed in linear approximation within the framework of the Ginzburg-Landau theory 
including an external inhomogeneous field. The result suggests ways to produce stress-free, 
paraboloidically curved finite size crystals. 

1. Introduction 
The translation symmetry of crystals is closely related 
to the uniform distance determined by atomic forces 
between neighbouring atoms (or ions). A mechanic- 
ally distorted crystal, however, represents an example 
Of a state where the crystal symmetry is weakly 
broken. In this state the atoms are positioned along 
macroscopically curved surfaces and the "lattice con- 
stants" depend on position. A similar distorted state 
may be achieved by inhomogeneous temperature or 
chemical composition distribution. Large variation of 
the lattice constant is more easily achieved by com- 
position changes than by non-uniform temPerature 
distribution, therefore chemically curved crystals are 
studied in the present work. 

It is known that in a linear approximation the 
curved crystal remains stress-free independent of its 
shape and size providing that the composition (or 
temperature) gradient is constant. In this case the 
"crystal planes" which are originally perpendicular to 
the gradient transform into paraboloids. This is the 
reason why curved crystals may be utilized to focus 
X- and neutron rays. Progress in this field has been 
reviewed by Caciuffo et al. [1]. Another interesting 
aspect of curved crystals is that in them the physical 
parameters vary uniformly along one direction. In 
general, the inhomogeneous composition is not stable 
thermodynamically although the resultant crystal is 
mechanically stable. With crystals of finite size, how- 
ever, the curved state may be stabilized thermodynam- 
ically by the application of an external field or by a 
suitable choice of boundary conditions. Furthermore, 
the concentration variation adjusted at sufficiently 
high temperature may be frozen-in at room tempera- 
ture because of low diffusivity. The above results are 
valid in linear approximation. The effect of non- 
linearity is considered as a restriction which limits the 
curvature and/or size of the curved crystal. Analysis of 
these limits goes beyond the scope of the present linear 
treatment. 

Here, the Ginzburg-Landau formalism is utilized to 
investigate the equilibrium concentration variation in 
a finite elastic material. A similar model was used by 
Cahn [2, 3] to describe the spinodal decomposition in 
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an elastic solid. This extended theory of spinodal 
decomposition could explain both the anisotropy of 
phase separation and the effect of an external (mag- 
netic or elastic) field. Since that time the application of 
a homogeneous field has become a useful method for 
manufacturing alloys with desired properties. It is 
worth mentioning that the application of an inhomo- 
geneous field as a promising method to produce con- 
trolled structural variations has already been proposed 
by Cahn [4]. 

Many features of the present model are well known 
from its other applications in solid/state physics. For 
example, in order to describe the ~-~' phase transition 
in metal-hydrogen systems Horner and Wagner [5] 
developed a model which takes the effect of elastic 
interaction into account. Moreover, in magnetic sys- 
tems, which are analogous to solid solutions, the 
phase transition is drastically changed by the elastic 
interaction (for a review see Bergman and Halperin 
[6]). 

In these models an elastic lattice is combined with 
an Ising or Heisenberg type model. Generally the 
elastic degrees of freedom are eliminated by introduc- 
ing two kinds of magnetic interaction. The first one is 
a short range interaction that can modify drastically 
the phase transition, while the second interaction is 
introduced to take into account the effect of free sur- 
face as detailed by Wegner [7]. Since these calculations 
tend to be complicated, the boundary conditions were 
chosen to be as simple as possible, e.g. a homogeneous 
strain, etc. The present paper might be considered as 
an extension of the previous work. Despite the sim- 
plifications, the results may be utilized for material 
design. The possibility of producing curved crystals 
from intercalation compounds and mixed superionic 
conductors will be discussed. 

2. Formalism 
The inhomogeneous composition of the elastic solid is 
described by c(r), the variation of local concentration 
which satisfies the conservation law 

fv c(r) d3r = 0 (1) 

where we integrate over the finite volume of material. 
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The components of strain resulting from this com- 
position variation are 

l(Ou, 
uij = ~ \ Orj + ~riJ i, j = x, y, z (2) 

where ui is the ith component of the displacement 
vector u at point r. 

The total free energy of our system may be 
separated into four contributions expressed in terms 
of c(r) and u~ 

F = Fe + Fch + Fe-ch + Fext (3) 

Adopting the summation convention for repeated 
indices, in linear approximation the elastic energy of 
an isotropic material is 

= .IV [fl(U/j 1 2 1 2 Fo ~szuke] d3r - ~ukk6,j) + (4) 

where ~c and /, are the moduli of compression and 
rigidity. The contribution of inhomogeneous compo- 
sition is traditionally given as 

f Fch 

where f ( c )  is the free energy of a unit volume of  
material with homogeneous concentration c, and the 
gradient term describes the additional energy of  
inhomogeneities (such as domain walls). It is known 
from the theory of spinodal decomposition that the 
role of  the gradient term is important for wavelengths 
of about 5 nm characteristic of the concentration fluc- 
tuations in binary alloys. On a macroscopic scale, 
however, this term is probably insignificant, therefore 
it is neglected henceforth. 

Generally, f ( c )  is expressed by its Taylor series 

f ( c )  = fo + f i e  + ½f2c 2 + ' ' '  (6) 

where the coefficients)C0 and f~ are irrelevant from the 
viewpoint of minimalization due to the material con- 
servation defined by Equation 1, and f2 depends on 
temperature. In linear approximation the higher order 
terms are negligible. 

The concentration variation is coupled linearly with 
the elastic distortion as 

Fe-ch - -  fv gc(r)ukk d 3r (7) 

where g = a/K; is the relative change of volume 
caused by unit concentration variation. The fourth 
term in Equation 1 defined by 

Fext = fV hzc(r) d3r (8) 

is introduced to take into account the effect of an 
external inhornogeneous field on the equilibrium state. 
On the one hand this contribution describes correctly 
the effect of gravitation that may be significantly 
enhanced by generating a centrifugal field. On the 
other hand, this term may be considered as a sim- 
plified description of other external effects such as 
mechanical bending. 

The components of stress tensor are given by func- 
tional derivatives of free energy with respect to u~, 
thus 

%. = ( - g c  + xu~k)6 o. + 2#(u~ - lukkaij) (9) 
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The equations of mechanical equilibrium are 

&-___20 = 0 (10) 
trj 

These equations may be expressed in terms of the 
displacement vector by substituting Equations 2 and 9 
into Equation 10 

~c + ~ + #-~k = gc (11) 

For simplicity we assume a free surface, therefore on 
the surface 

oon i = 0 (12) 

where n is the unit vector perpendicular to the surface. 
This equation gives a boundary condition for the 
solution of Equation 1 1. 

It is worth mentioning that similar expressions are 
obtained for thermoelasticity in the textbook by Lan- 
dau and Lifshitz [8]. 

3. Chemical ly  curved state 
First we briefly prove that in a linear approximation 
the linear variation of  concentration results in a stress- 
free, curved state. For  this purpose we assume that the 
concentration varies along the z axis as 

c(r) = az (13) 

It is easy to check that in this case Equation 11 has a 
cylindrically symmetrical solution 

g a  
Uz(?" ) ~ "~K XZ  

Uy(r) ga = -~x yz  (14) 

g a  
Uz(r) = U~ (z2 - x2 - y2)  

in which the translation and rotation are excluded at 
point r = 0. Simple mathematical manipulations give 

ga 
ug = 3~:z6~ (15) 

and 

a U = 0 (16) 

Since all the components of the stress tensor are zero 
in the whole material the boundary Condition 12 is 
trivially satisfied independent of the shape. 

The geometrical properties of  the chemically curved 
state are visualized in Fig. 1. This figure shows the 
distortion of  a square cross-section at three different 
values of  concentration gradient including the neutral 
state. The size variation of  small squares is in agree- 
ment with the volumetric dilatation or contraction 
caused by the linear variation of concentration. At the 
same time, these small squares are weakly distorted, 
and the planes originally perpendicular to the z axis 
transform into paraboloids. 

The middle plot of Fig. 1 suggests a simple picture: 
the z = constant planes close to the origin transform 
into spherical surfaces whose centre coincides with 
the point of the z axis where the extrapolated lattice 
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Figure 1 Cross-section of chemically 
curved states at different vertical concen- 
tration gradients. The relative changes of 
the "lattice constant" between the top 
and bottom are (a) 0, (b) 0.5 and (c) 1. 

constant should vanish. If this is recognized one can 
easily estimate the curvature caused by a given concen- 
tration gradient. For example, 1% variation of the 
lattice constant between the top and bottom of a 1 mm 
thin slice of solid solution results in a spherically 
curved state with a radius of 10 cm. 

The plot on the right-hand side of Fig. 1 shows 
clearly that both the horizontal and the vertical mar- 
ker lines transform into parabolae intersecting each 
other perpendicularly as is characteristic of a para- 
bolic coordinate system. A noticeable consequence of 
this behaviour is that this macroscopic distortion 
hardly changes the bond angles characteristic of crys- 
tal structures. On the other hand, this plot clarifies 
some drawbacks of this solution related to the increase 
of the displacement vector when increasing the size 
and concentration gradient. It is evident that the size 
and/or concentration gradient is/are limited by the 
validity of linear approximation which is not yet 
known. 

The main conclusion of the above calculation is that 
stress-free (mechanically stable) crystals of linearly 
varying lattice constant may be produced by a con- 
stant gradient of either temperature or concentration. 
In the curved crystal the gradient of concentration (or 
temperature) induces particle (or energy) transport 
(see Equation 13) whose stabilization requires special 
boundary conditions. In contrast to energy transport, 
particle transport is generally prevented at room tem- 
perature so the linear concentration variation may be 
frozen-in for a long time despite the boundary con- 
ditions and the thermodynamic instability. For the 
preparation of such a state, however, the knowledge 
of thermodynamic stability is particularly important. 

4. Thermodynamic stability 
In order to analyse the thermodynamic stability in the 
stress-free case the total free energy has to be expressed 
in terms of the concentration gradient introduced 
by Equation 13. Substitution of Equation 14 into 
Equations 4 and 7 gives F e + Fe_oh in the following 
form 

F e q - F e  c h = - f v ~ - ~ ( a z ) 2 d 3 r  (17) 

This quadratic contribution is negative in agree- 
ment with the well known fact that the elastic inter- 
action assists the phase separation accompanied by 
volumetric change in solid solutions. At high tempera- 
tures the homogeneity is provided by the increasing 
role of entropy included in Fob. 

At K = 0 the total free energy may easily be mini- 
mized with respect to concentration gradient because 

the result becomes independent of size and shape. In 
the high temperature region (f2 > g2/~c) the equilib- 
rium concentration gradient is 

h 
aeq  - -  ( f 2  - -  ( g ' 2 / K ) )  (18) 

In the absence of an external field (h = 0) this result 
suggests a homogeneous state above a critical tem- 
perature Tc defined by 

f2(T:) - (19) 
/£ 

Despite the presence of an external field (h ¢ 0) the 
chemical potential, which is the functional derivative of 
the total free energy with respect to the concentration, 
is constant therefore the mass transport is evidently 
zero in the bulk. It is well known that the time varia- 
tion of concentration vanishes not only at zero but at 
constant current density too, corresponding to linear 
variation of concentration and chemical potential. By 
this means the required concentration variation may 
be stabilized with a suitable choice of boundary con- 
ditions providing constant mass transport through the 
bulk. A similar phenomenon may be observed in the 
temperature variation at constant heat current density. 

According to Equation 18, in the vicinity of the 
critical temperature the external field can result in 
an arbitrary high concentration gradient which is 
obviously limited by the non-linear terms. 

Below the critical temperature the total free energy 
is minimized at infinite concentration gradient. This 
result is usually interpreted as a tendency towards the 
complete phase separation which is the subject of 
spinodal decomposition. Within the framework of 
spinodal decomposition the time dependence of phase 
separation as well as the effect of finite K and non- 
linearity are analysed in detail (for a review see, 
:e.g., the paper by Langer [9]). Unfortunately, the effect 
of an inhomogeneous external field on the spinodal 
decomposition has not yet been analysed although it 
should permit controlled variation in concentrations 
below T~. 

5. Summary and conclusions 
The theoretical possibility of the creation of chemi- 
cally curved crystals with a uniform variation of"lattice 
constant" has been investigated within the framework 
of the Ginzburg-Landau formalism. The present des- 
cription is restricted to a linear approximation, 
therefore, the results have a limited range of validity. 
Keeping these limits in mind, the present theory per- 
mits the manufacture of curved single crystals. 

It is shown that a constant concentration gradient 
results in a stress-free paraboloidically curved state. In 
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other words, the crystals are mechanically stable in 
spite of the linear variation of "lattice constant". In 
linear approximation this prediction is independent of 
the crystal size and shape. For simplicity the above 
statement is proved for an isotropic material, but it is 
easy to check that it remains valid in the more realistic 
case of cubic symmetry. 

It is underlined that any deviation from the linear 
variation of concentration causes stresses. For example, 
a sinusoidal variation of concentration induces stress 
with the same periodicity in the bulk. The strength 
of this stress is proportional to the wavenumber of 
concentration variation, i.e. it vanishes when the 
wavelength tends to infinity. On the other hand, the 
condition of free surface (Equation 12) requires the 
addition of macroscopic modes which are the solution 
of the homogeneous version of Equation 11. These 
macroscopic modes depend on the shape except for 
those two which correspond to a constant and a linear 
variation in dilatation as discussed by Wegner [7]. In the 
light of these results it is not surprising that the stress 
disappears in a finite specimen since both the constant 
and the linear variation of concentration may be con- 
sidered as a limit in which the wavelength goes to 
infinity. These fortunate circumstances made the 
present analysis simple. 

In general, two thermodynamically stable states 
exist in solid solutions which are homogeneous or 
completely decomposed at equilibrium. At low tem- 
peratures, however, the thermodynamically non- 
stable composition distribution, e.g. linear, may be 
preserved for a long time due to the inefficient dif- 
fusion. The main difficulty is how to achieve the linear 
variation desired in our case. 

Thermodynamics suggests two possibilities. In an 
open system a constant mass current density driven 
through the sample leads to a linear concentration 
variation in the bulk. This state may be achieved by a 
suitable choice of shape and boundary conditions. On 
the other hand, the application of an external field, 
such as mechanical bending or centrifugal force, can 
stabilize the linear concentration variation above a 
critical temperature. Below this critical temperature 
the homogeneous phase is no longer stable and the 
solid solution separates spontaneously into two 
phases with either nucleation or spinodal mechanism. 
In this temperature (and composition) region the 
effect of an external field with constant gradient is 
particularly interesting because it is a unique example 
for directional spinodal decomposition where the 
increase of long wavelength concentration fluctuation 
is preferred. 

Beyond the linear approximation it is expected 
that the stress does not vanish completely in a 
chemically curved crystal. Instead, the stress probably 
has a minimum at small deviation from the linear 
concentration variation. The non-linear and size 
effects may influence the minimum value of stress, 
thus limiting the sample size and/or curvature. 
According to perturbation theory, the present results 
should be correct at sufficiently small concentration 
variation. A more precise determination of the limits 
is not possible since the mathematical description, 
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which takes all the non-linear effects into consider- 
ation, is extremely complicated. 

Chemical curvature is not only observed but con- 
sciously applied in some areas of solid state physics. 
For example, it is well known as a disadvantageous 
effect in thin layer technology. It is also observed 
in palladium membranes used as hydrogen filters. 
Recently, various techniques have been investigated in 
an attempt to produce monochromator crystals which 
may enhance the integrated intensity in a more con- 
trollable way than the conventional method of mech- 
anical bending [1]. 

In principle any kind of solid solution or intercala- 
tion compound is suitable for preparing chemically 
curved crystals. Judging from the present analysis it 
needs a well controlled concentration distribution. 
The realization of this requirement, however, may be 
troublesome since any deviation from the linear com- 
position distribution would lead to undesired stresses 
which may result in cracking and/or plastic deforma- 
tion. It is worth mentioning that this effect is not so 
dangerous in those materials in which the diffusion 
can reduce the stresses. This is the reason why inter- 
calation compounds and mixed superionic conductors 
which have no structural phase transition are 
proposed. 

In an intercalation compound such as NaxWO3, the 
interstitial particle can reduce the compressive stress 
when it moves away from the compressed region. This 
stress relaxation mechanism is well known in metal- 
lurgy. In a mixed superionic conductor the substitution 
of the larger mobile ion by a smaller one decreases the 
compression. All the requirements including mechani- 
cal strength and high crystallographic symmetry may 
be fulfilled by mixed alkaline-earth halides of fluorite 
structure, such as (Ba-Sr)(F'CI)2 solid solutions. 
More recently the desired properties, except the cubic 
symmetry, have been observed by Lumbreras et al. 

[10] in mixed lead halides. Mixed alkali halides with 
NaC1 structure might also be good candidates because 
sufficiently high ionic mobility is found in these 
materials (for a review see Johannesen and McKelvy 
[11]). In the above mentioned materials the high dif- 
fusivity permits the composition to be controlled by 
applying an inhomogeneous external field. The appli- 
cation of a centrifugal field may be another promising 
technique. Its effect on the concentration gradient was 
first observed by Anthony [12] in In-Au alloy. 
Recently, the centrifugally induced inhomogeneities 
were considered by Ogorelec [13] in non-stoichiometric 
superionic conductors. Unfortunately, in neither of 
these papers was the curvature investigated. It is 
evident that besides the methods suggested above 
there are other possibilities of preparing chemically 
curved crystals. With modifications, certain of the 
technologies developed for silicon processing seem 
to be applicable for producing curved crystals. For 
example, crystals might be grown both by the epi- 
taxial methods and by the Czochralski technique if 
the melt (or vapour) composition were to be pre- 
cisely controlled. It is to be hoped that in high 
technology increasingly sophisticated instruments 
will be fabricated for material design and that such 



instruments will increase the chance of preparing 
curved crystalsl 
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